Details

Structural Concrete


Structural Concrete

Theory and Design
7. Aufl.

von: M. Nadim Hassoun, Akthem Al-Manaseer

135,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 10.03.2020
ISBN/EAN: 9781119605126
Sprache: englisch
Anzahl Seiten: 960

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>The leading structural concrete design reference for over two decades—updated to reflect the latest ACI 318-19 code</b></p> <p>A go-to resource for structural engineering students and professionals for over twenty years, this newly updated text on concrete structural design and analysis reflects the most recent ACI 318-19 code. It emphasizes student comprehension by presenting design methods alongside relevant codes and standards. It also offers numerous examples (presented using SI units and US-SI conversion factors) and practice problems to guide students through the analysis and design of each type of structural member.</p> <p>New to<i> Structural Concrete: Theory and Design, Seventh Edition</i> are code provisions for transverse reinforcement and shear in wide beams, hanger reinforcement, and bi-directional interaction of one-way shear. This edition also includes the latest information on two-way shear strength, ordinary walls, seismic loads, reinforcement detailing and analysis, and materials requirements. This book covers the historical background of structural concrete; advantages and disadvantages; codes and practice; and design philosophy and concepts. It then launches into a discussion of the properties of reinforced concrete, and continues with chapters on flexural analysis and design; deflection and control of cracking; development length of reinforcing bars; designing with the strut-and-tie method; one-way slabs; axially loaded columns; and more.</p> <ul> <li>Updated to align with the new ACI 318-19 code with new code provisions to include: transverse reinforcement and shear in wide beams, hanger reinforcement, bi-directional interaction of one-way shear, and reference to ACI certifications</li> <li>Includes dozens of worked examples that explain the analysis and design of structural members</li> <li>Offers updated information on two-way shear strength, seismic loads, materials requirements, and more</li> <li>Improves the design ability of students by explaining code requirements and restrictions </li> <li>Provides examples in SI units in every chapter as well as conversion factors from customary units to SI</li> <li>Offers instructors access to a solutions manual via the book's companion website</li> </ul> <p><i>Structural Concrete: Theory and Design, Seventh Edition</i> is an excellent text for undergraduate and graduate students in civil and structural engineering programs. It will also benefit concrete designers, structural engineers, and civil engineers focused on structures.</p>
<p>Preface xiii</p> <p>Notation xvii</p> <p>Conversion Factors xxiii</p> <p><b>1 Introduction 1 </b></p> <p>1.1 Structural Concrete 1</p> <p>1.2 Historical Background 1</p> <p>1.3 Advantages and Disadvantages of Reinforced Concrete 3</p> <p>1.4 Codes of Practice 3</p> <p>1.5 Design Philosophy and Concepts 3</p> <p>1.6 Units of Measurement 4</p> <p>1.7 Loads 5</p> <p>1.8 Safety Provisions 6</p> <p>1.9 Structural Concrete Elements 7</p> <p>1.10 Structural Concrete Design 8</p> <p>1.11 Accuracy of Calculations 8</p> <p>1.12 Concrete High-Rise Buildings 8</p> <p>References 11</p> <p><b>2 Properties of Reinforced Concrete 12 </b></p> <p>2.1 Factors Affecting Strength of Concrete 12</p> <p>2.2 Compressive Strength 14</p> <p>2.3 Stress–Strain Curves of Concrete 14</p> <p>2.4 Tensile Strength of Concrete 16</p> <p>2.5 Flexural Strength (Modulus of Rupture) of Concrete 17</p> <p>2.6 Shear Strength 17</p> <p>2.7 Modulus of Elasticity of Concrete 18</p> <p>2.8 Poisson’s Ratio 19</p> <p>2.9 Shear Modulus 20</p> <p>2.10 Modular Ratio 20</p> <p>2.11 Volume Changes of Concrete 20</p> <p>2.12 Creep 21</p> <p>2.13 Models for Predicting Shrinkage and Creep of Concrete 22</p> <p>2.14 Unit Weight of Concrete 57</p> <p>2.15 Fire Resistance 57</p> <p>2.16 High-Performance Concrete 58</p> <p>2.17 Lightweight Concrete 58</p> <p>2.18 Fibrous Concrete 59</p> <p>2.19 Steel Reinforcement 59</p> <p>Summary 64</p> <p>References 65</p> <p>Problems 66</p> <p><b>3 Flexural Analysis of Reinforced Concrete Beams 69 </b></p> <p>3.1 Introduction 69</p> <p>3.2 Assumptions 69</p> <p>3.3 Behavior of Simply Supported Reinforced Concrete Beam Loaded to Failure 70</p> <p>3.4 Types of Flexural Failure and Strain Limits 73</p> <p>3.5 Load Factors 76</p> <p>3.6 Strength Reduction Factor <i>𝜙</i> 77</p> <p>3.7 Significance of Analysis and Design Expressions 79</p> <p>3.8 Equivalent Compressive Stress Distribution 79</p> <p>3.9 Singly Reinforced Rectangular Section in Bending 82</p> <p>3.10 Lower Limit or Minimum Percentage of Steel 89</p> <p>3.11 Adequacy of Sections 90</p> <p>3.12 Bundled Bars 93</p> <p>3.13 Sections in the Transition Region (<i>𝜙</i> < 0.9) 94</p> <p>3.14 Rectangular Sections with Compression Reinforcement 96</p> <p>3.15 Analysis of T- and I-Sections 105</p> <p>3.16 Dimensions of Isolated T-Shaped Sections 112</p> <p>3.17 Inverted L-Shaped Sections 113</p> <p>3.18 Sections of Other Shapes 114</p> <p>3.19 Analysis of Sections Using Tables 115</p> <p>3.20 Additional Examples 116</p> <p>3.21 Examples Using SI Units 117</p> <p>Summary 119</p> <p>References 122</p> <p>Problems 122</p> <p><b>4 Flexural Design of Reinforced Concrete Beams 125 </b></p> <p>4.1 Introduction 125</p> <p>4.2 Rectangular Sections with Tension Reinforcement Only 125</p> <p>4.3 Spacing of Reinforcement and Concrete Cover 127</p> <p>4.4 Rectangular Sections with Compression Reinforcement 133</p> <p>4.5 Design of T-Sections 138</p> <p>4.6 Additional Examples 142</p> <p>4.7 Examples Using SI Units 147</p> <p>Summary 148</p> <p>Problems 151</p> <p><b>5 Shear and Diagonal Tension 155 </b></p> <p>5.1 Introduction 155</p> <p>5.2 Shear Stresses in Concrete Beams 155</p> <p>5.3 Behavior of Beams without Shear Reinforcement 158</p> <p>5.4 Beam Shear Strength 160</p> <p>5.5 Beams with Shear Reinforcement 161</p> <p>5.6 ACI Code Shear Design Requirements 163</p> <p>5.7 Design of Vertical Stirrups 168</p> <p>5.8 Design Summary 169</p> <p>5.9 Shear Force Due to Live Loads 174</p> <p>5.10 Shear Stresses in Members of Variable Depth 178</p> <p>5.11 Examples Using SI Units 183</p> <p>Summary 186</p> <p>References 187</p> <p>Problems 187</p> <p><b>6 Deflection and Control of Cracking 190 </b></p> <p>6.1 Deflection of Structural Concrete Members 190</p> <p>6.2 Instantaneous Deflection 191</p> <p>6.3 Long-Time Deflection 196</p> <p>6.4 Allowable Deflection 197</p> <p>6.5 Deflection Due to Combinations of Loads 197</p> <p>6.6 Cracks in Flexural Members 206</p> <p>6.7 ACI Code Requirements 209</p> <p>Summary 213</p> <p>References 214</p> <p>Problems 215</p> <p><b>7 Development Length of Reinforcing Bars 218 </b></p> <p>7.1 Introduction 218</p> <p>7.2 Development of Bond Stresses 219</p> <p>7.3 Development Length in Tension 222</p> <p>7.4 Summary for Computation of <i>I<sub>d </sub></i>in Tension 225</p> <p>7.5 Development Length in Compression 227</p> <p>7.6 Critical Sections in Flexural Members 228</p> <p>7.7 Standard Hooks (ACI Code, Sections 25.4.3) 232</p> <p>7.8 Splices of Reinforcement 235</p> <p>7.9 Moment–Resistance Diagram (Bar Cutoff Points) 239</p> <p>Summary 243</p> <p>References 244</p> <p>Problems 245</p> <p><b>8 Design of Deep Beams by the Strut-and-Tie Method 248 </b></p> <p>8.1 Introduction 248</p> <p>8.2 <i>B</i>- and <i>D</i>-Regions 248</p> <p>8.3 Strut-and-Tie Model 248</p> <p>8.4 ACI Design Procedure to Build a Strut-and-Tie Model 251</p> <p>8.5 Strut-and-Tie Method According to AASHTO LRFD 259</p> <p>8.6 Deep Members 260</p> <p>References 277</p> <p>Problems 277</p> <p><b>9 One-Way Slabs 279 </b></p> <p>9.1 Types of Slabs 279</p> <p>9.2 Design of One-Way Solid Slabs 281</p> <p>9.3 Design Limitations According to ACI Code 283</p> <p>9.4 Temperature and Shrinkage Reinforcement 283</p> <p>9.5 Reinforcement Details 284</p> <p>9.6 Distribution of Loads from One-Way Slabs to Supporting Beams 284</p> <p>9.7 One-Way Joist Floor System 289</p> <p>Summary 292</p> <p>References 293</p> <p>Problems 293</p> <p><b>10 Axially Loaded Columns 295 </b></p> <p>10.1 Introduction 295</p> <p>10.2 Types of Columns 295</p> <p>10.3 Behavior of Axially Loaded Columns 296</p> <p>10.4 ACI Code Limitations 297</p> <p>10.5 Spiral Reinforcement 299</p> <p>10.6 Design Equations 300</p> <p>10.7 Axial Tension 301</p> <p>10.8 Long Columns 301</p> <p>Summary 304</p> <p>References 304</p> <p>Problems 305</p> <p><b>11 Members in Compression and Bending 306 </b></p> <p>11.1 Introduction 306</p> <p>11.2 Design Assumptions for Columns 308</p> <p>11.3 Load–Moment Interaction Diagram 308</p> <p>11.4 Safety Provisions 310</p> <p>11.5 Balanced Condition: Rectangular Sections 311</p> <p>11.6 Column Sections under Eccentric Loading 314</p> <p>11.7 Strength of Columns for Tension Failure 315</p> <p>11.8 Strength of Columns for Compression Failure 317</p> <p>11.9 Interaction Diagram Example 322</p> <p>11.10 Rectangular Columns with Side Bars 324</p> <p>11.11 Load Capacity of Circular Columns 327</p> <p>11.12 Analysis and Design of Columns Using Charts 331</p> <p>11.13 Design of Columns under Eccentric Loading 336</p> <p>11.14 Biaxial Bending 341</p> <p>11.15 Circular Columns with Uniform Reinforcement under Biaxial Bending 343</p> <p>11.16 Square and Rectangular Columns under Biaxial Bending 345</p> <p>11.17 Parme Load Contour Method 346</p> <p>11.18 Equation of Failure Surface 350</p> <p>11.19 SI Example 352</p> <p>Summary 354</p> <p>References 355</p> <p>Problems 356</p> <p><b>12 Slender Columns 360 </b></p> <p>12.1 Introduction 360</p> <p>12.2 Effective Column Length (<i>Kl<sub>u</sub></i>) 361</p> <p>12.3 Effective Length Factor (<i>K</i>) 363</p> <p>12.4 Member Stiffness (<i>EI</i>) 365</p> <p>12.5 Limitation of the Slenderness Ratio (<i>Kl<sub>u</sub></i>∕<i>r</i>) 366</p> <p>12.6 Moment-Magnifier Design Method 367</p> <p>Summary 377</p> <p>References 378</p> <p>Problems 379</p> <p><b>13 Footings 381 </b></p> <p>13.1 Introduction 381</p> <p>13.2 Types of Footings 383</p> <p>13.3 Distribution of Soil Pressure 384</p> <p>13.4 Design Considerations 386</p> <p>13.5 Plain Concrete Footings 395</p> <p>13.6 Combined Footings 407</p> <p>13.7 Footings under Eccentric Column Loads 413</p> <p>13.8 Footings under Biaxial Moment 414</p> <p>13.9 Slabs on Ground 417</p> <p>13.10 Footings on Piles 418</p> <p>13.11 SI Equations 418</p> <p>Summary 418</p> <p>References 420</p> <p>Problems 421</p> <p><b>14 Retaining Walls 423 </b></p> <p>14.1 Introduction 423</p> <p>14.2 Types of Retaining Walls 423</p> <p>14.3 Forces on Retaining Walls 424</p> <p>14.4 Active and Passive Soil Pressures 425</p> <p>14.5 Effect of Surcharge 429</p> <p>14.6 Friction on the Retaining Wall Base 430</p> <p>14.7 Stability Against Overturning 431</p> <p>14.8 Proportions of Retaining Walls 432</p> <p>14.9 Design Requirements 433</p> <p>14.10 Drainage 433</p> <p>14.11 Basement Walls 444</p> <p>Summary 447</p> <p>References 448</p> <p>Problems 448</p> <p><b>15 Design for Torsion 452 </b></p> <p>15.1 Introduction 452</p> <p>15.2 Torsional Moments in Beams 453</p> <p>15.3 Torsional Stresses 454</p> <p>15.4 Torsional Moment in Rectangular Sections 455</p> <p>15.5 Combined Shear and Torsion 458</p> <p>15.6 Torsion Theories for Concrete Members 458</p> <p>15.7 Torsional Strength of Plain Concrete Members 462</p> <p>15.8 Torsion in Reinforced Concrete Members (ACI Code Procedure) 462</p> <p>15.9 Summary of ACI Code Procedures 469</p> <p>Summary 476</p> <p>References 477</p> <p>Problems 477</p> <p><b>16 Continuous Beams and Frames 480 </b></p> <p>16.1 Introduction 480</p> <p>16.2 Maximum Moments in Continuous Beams 480</p> <p>16.3 Building Frames 485</p> <p>16.4 Portal Frames 486</p> <p>16.5 General Frames 488</p> <p>16.6 Design of Frame Hinges 490</p> <p>16.7 Introduction to Limit Design 500</p> <p>16.8 The Collapse Mechanism 502</p> <p>16.9 Principles of Limit Design 502</p> <p>16.10 Upper and Lower Bounds of Load Factors 503</p> <p>16.11 Limit Analysis 504</p> <p>16.12 Rotation of Plastic Hinges 507</p> <p>16.13 Summary of Limit Design Procedure 513</p> <p>16.14 Moment Redistribution of Maximum Negative or Positive Moments in Continuous Beams 516</p> <p>Summary 523</p> <p>References 524</p> <p>Problems 525</p> <p><b>17 Design of Two-Way Slabs 527 </b></p> <p>17.1 Introduction 527</p> <p>17.2 Types of Two-Way Slabs 527</p> <p>17.3 Economical Choice of Concrete Floor Systems 529</p> <p>17.4 Design Concepts 532</p> <p>17.5 Column and Middle Strips 535</p> <p>17.6 Minimum Slab Thickness to Control Deflection 536</p> <p>17.7 Shear Strength of Slabs 540</p> <p>17.8 Analysis of Two-Way Slabs by the Direct Design Method 544</p> <p>17.9 Design Moments in Columns 569</p> <p>17.10 Transfer of Unbalanced Moments to Columns 570</p> <p>17.11 Waffle Slabs 581</p> <p>17.12 Equivalent Frame Method 589</p> <p>Summary 598</p> <p>References 598</p> <p>Problems 599</p> <p><b>18 Stairs 601 </b></p> <p>18.1 Introduction 601</p> <p>18.2 Types of Stairs 601</p> <p>18.3 Examples 617</p> <p>Summary 625</p> <p>References 625</p> <p>Problems 625</p> <p><b>19 Introduction to Prestressed Concrete 627 </b></p> <p>19.1 Prestressed Concrete 627</p> <p>19.2 Materials and Serviceability Requirements 637</p> <p>19.3 Loss of Prestress 639</p> <p>19.4 Analysis of Flexural Members 645</p> <p>19.5 Design of Flexural Members 654</p> <p>19.6 Cracking Moment 659</p> <p>19.7 Deflection 661</p> <p>19.8 Design for Shear 664</p> <p>19.9 Preliminary Design of Prestressed Concrete Flexural Members 670</p> <p>19.10 End-Block Stresses 672</p> <p>Summary 674</p> <p>References 675</p> <p>Problems 676</p> <p><b>20 Seismic Design of Reinforced Concrete Structures 679 </b></p> <p>20.1 Introduction 679</p> <p>20.2 Seismic Design Category 679</p> <p>20.3 Analysis Procedures 695</p> <p>20.4 Load Combinations 708</p> <p>20.5 Special Requirements in Design of Structures Subjected to Earthquake Loads 709</p> <p>References 740</p> <p>Problems 740</p> <p><b>21 Beams Curved in Plan 742 </b></p> <p>21.1 Introduction 742</p> <p>21.2 Uniformly Loaded Circular Beams 742</p> <p>21.3 Semicircular Beam Fixed at End Supports 749</p> <p>21.4 Fixed-End Semicircular Beam under Uniform Loading 753</p> <p>21.5 Circular Beam Subjected to Uniform Loading 755</p> <p>21.6 Circular Beam Subjected to a Concentrated Load at Midspan 758</p> <p>21.7 V-Shape Beams Subjected to Uniform Loading 761</p> <p>21.8 V-Shape Beams Subjected to a Concentrated Load at the Centerline of the Beam 763</p> <p>Summary 768</p> <p>References 768</p> <p>Problems 768</p> <p><b>22 Prestressed Concrete Bridge Design Based on AASHTO LRFD Bridge Design Specifications 769 </b></p> <p>22.1 Introduction 769</p> <p>22.2 Typical Cross Sections 769</p> <p>22.3 Design Philosophy of AASHTO Specificatioins 773</p> <p>22.4 Load Factors and Combinations (AASHTO 3.4) 773</p> <p>22.5 Gravity Loads 776</p> <p>22.6 Design for Flexural and Axial Force Effects (AASHTO 5.6) 784</p> <p>22.7 Design for Shear (AASHTO 5.8) 785</p> <p>22.8 Loss of Prestress (AASHTO 5.9.3) 791</p> <p>22.9 Deflections (AASHTO 5.6.3.5.2) 792</p> <p>References 816</p> <p><b>23 Review Problems on Concrete Building Components 817 </b></p> <p><b>24 Design and Analysis Flowcharts 840 </b></p> <p>Appendix A: Design Tables (U.S. Customary Units) 864</p> <p>Appendix B: Design Tables (SI Units) 874</p> <p>Appendix C: Structural Aids 882</p> <p>Index 903</p>
<b>M. Nadim Hassoun</b>, PhD, PE, FASCE, FICE, MACI, is Professor Emeritus of Civil Engineering at South Dakota State University.<br /><br /><b>Akthem Al-Manaseer</b>, PhD, PEng, CEng, FASCE, FACI, FCSCE, MIStructE is Professor of Civil and Environmental Engineering at San Jose State University.
<p><b>THE LEADING STRUCTURAL CONCRETE DESIGN REFERENCE FOR OVER TWO DECADES—UPDATED TO REFLECT THE LATEST ACI 318-19 CODE</b> <p>A go-to resource for structural engineering students and professionals for over twenty years, this newly updated text on concrete structural design and analysis reflects the most recent ACI 318-19 code. It emphasizes student comprehension by presenting design methods alongside relevant codes and standards. It also offers numerous examples and practice problems to guide students through the analysis and design of each type of structural member. <p>New to <i>Structural Concrete: Theory and Design, Seventh Edition</i> are code provisions for reinforcement limits and modified shear design, change in serviceability design equations, modification to the development length equations, and new shear requirement for footings design. This edition also includes the latest information on updated procedures for slab design, wall design, seismic loads, reinforcement detailing, and materials for higher grade reinforcement. This book introduces readers to the topic and covers the historical background of structural concrete; advantages and disadvantages; codes and practice; and design philosophy and concepts. It then launches into a discussion of the properties of reinforced concrete and continues with chapters on flexural analysis and design, deflection and control of cracking, development length of reinforcing bars, deep beam design using the strut-and-tie method, one-way and two slabs, axially loaded columns, footings, walls, stairs, and prestressed and seismic concrete design. <ul> <li>Updated to align with the new ACI 318-19 code with new code provisions</li> <li>Includes worked examples that explain the analysis and design of structural members</li> <li>Offers updated information on flexure and shear strength design, deep beams, footing design, seismic design, and materials requirements</li> <li>Explains code requirements and restrictions to enhance the design ability of students</li> <li>Provides examples in SI units in every chapter as well as conversion factors from customary units to SI</li> <li>Instructors have access to a solutions manual via the book's companion website</li> </ul> <p><i>Structural Concrete: Theory and Design, Seventh Edition</i> is an excellent text for undergraduate and graduate students in civil and structural engineering programs. This text will also benefit practicing structural design engineers and civil engineers.

Diese Produkte könnten Sie auch interessieren:

Water Quality Hazards and Dispersion of Pollutants
Water Quality Hazards and Dispersion of Pollutants
von: Wlodzimierz Czernuszenko, Pawel Rowinski
PDF ebook
149,79 €
Energy and Environment
Energy and Environment
von: Richard Loulou, Jean-Philippe Waaub, Georges Zaccour
PDF ebook
96,29 €